Integral calculus is a branch of calculus that deals with integration. If f is a function of real variable x, then the definite integral is given by
int_a^bf(x)dx
Where a and b are intervals of a real line.
Integral of ln u means integration of natural logarithmic (ln) function with respect to the variable ' u '. In this article, we are going to see the list of natural logarithmic integral (ln) rules with few example problems.
List of Natural Logarithmic (ln) Integral Rules:
int 1/u dx = ln |u| + C
int ln u du = uln u - u + C
int uln u du = (u^2)/2 ln u - 1/4 u2 + C
int u2 ln u du = (u^3)/3 ln u - 1/9 u3 + C
int (ln u)2 du = u(ln u)2 - 2uln u + 2u + C
int ((ln u)^n)/u dx = 1/(n + 1) (ln u)n+1 + C
int (du)/(uln u) = ln (ln u) + C
Learning Natural Logarithmic (ln) Integral Rules with Example Problems:
Example problem 1:
Integrate the function f(u) = 5/u
Solution:
Step 1: Given function
f(u) = 5/u
int f(u) du = int5/u du
Step 2: Integrate the given function f(u) = 5/u with respect to ' u',
int5/u du = 5ln (u)+ C
Example problem 2:
Integrate the function f(u) = log (9u)
Solution:
Step 1: Given function
f(u) = log (9u)
int f(u) du = intlog (9u) du
Step 2: Integrate the given function with respect to ' u' using integration by parts,
Let x = log (9u) dv = du
dx = 1/u du v = u
int x dv = xv - int v dx
int log (9u) du = ulog (9u) - int u 1/u du
= ulog (9u) - int du
= ulog(9u) - u + C
My forthcoming post is on Mean Median Mode Calculator and Finding Interquartile Range will give you more understanding about Algebra.
Example problem 3:
Integrate the function f(u) = 10log (3u)
Solution:
Step 1: Given function
f(u) = 10log (3u)
int f(u) du = int10log (3u) du
The above function can be written as
int f(u) du = 10intlog (3u) du
Step 2: Integrate the given function with respect to ' u' using integration by parts,
Let u = log (3u) dv = du
du = 1/u du v = u
int x dv = xv - int v dx
10 int log (3u) du = 10[ulog (3u) - int u 1/u du]
= 10ulog (3u) - 10int du
= 10ulog(3u) - 10u + C