Friday, February 15, 2013

Learning Line Segment


A Line segment can be defined as the line joining two end points. Each and every point of the line lies between the end points. For example for line segment is triangle sides and square sides. In a polygon, the end points are the vertices, then the line joining the vertices are said to be an edge or adjacent vertices or diagonal. If both the end points lie on a curve, then the line segment is said to be chord.

Definition to line segment:

Let us see the learning of line segment,

If S is a space of vector lies on A or B, and H is an element of V, then H is a line segment if H can be given by,

H = {i + tj| t `in`|0,1|}

for vectors i, j`in`S having vectors are i and i+j which are known as the end points of H.

Often one wants to differentiate "open line segments" and "closed line segments". Then he explains a closed line segment ,and open line segment as an element of L it can be given by

H = {i+ tj| t`in` |0,1|}

for vectors i, j`in`S,

This is the definition to learning line segment.


Properties of line segment:

Some properties are there to learning line segment,

A line segment is a non zero set,connected together.
If S is a space of vector , then a closed line segment is a closed element in S. thus, an open line segment is an           open element in E if and only if S is one-dimensional.
The above are the features of the line segment.

In proofs:

In geometry to learning line segment, it is defined that a point D is between two other points C and D, if the distance CD added to the distance DE is equal to the distance CE.

Line Segments learning plays a key role in other fields. Such as, the group is convex, if the line joins two end points of the group is lie in the group.

No comments:

Post a Comment