Saturday, May 11, 2013

A Proper Factor


A factor is a whole number which divides exactly by another whole number is called factor for  that number Any of the factors of a number, except the number itself. A factor is a portion of a number in general  integer or polynomial when multiplied by other factors  gives  entire quantity. The determination of factors is a factorization A proper factor of a positive integer is a factor of other than 1.Proper factor is a multiples for a given whole number which has multiples again it is aproper factor.Every whole number which has a factor of its own.proper factor is like a normal factor except 1
For example,
For 6, 2 and 3 are proper factors of , but 1 and 6 are not a proper factor.

Properties of proper factor:

The divisors for a any number other than 1 and  number itself are called  factors for that number.
A factor for N number is a number which divides  exactly N.

Example: the factors for 24 are 1,2,3,4,6,and 12

Generally for every number has itself and 1 as its factors.
When a number is greater than 1 and by itself and 1 as factors, then the number is prime.
A number or quantity that when multiplied with another number produces a given number or expression.

Example Problems for Proper factors:

Example 1 :
Find all the divisors and proper factors of  20

Solution :
The divisors of 20 are 1, 2, 4, 5, 10 and 20
The factors of 20 are 2, 4, 5 and 10

Example 2:
Find all the divisors and proper factors of 32.

Solution:
The divisors of 32 are 1, 2, 4, 8, 16 and 32
The proper factors of 32 are 2, 4, 8 and 16

Example 3:
Find Proper Factors of 30

Solution:
30=1*30
=2*15
=3*10
=4*15
=5*6
=6*5

Proper  Factors for 30 are 2,3,4,5,6

Example 4:
Find proper factors for 42

Solution:
42=1*42
=2*21
=3*14
=6*7
2,3,6

I am planning to write more post on Solve first Order Differential Equation and free 3rd grade math word problems. Keep checking my blog.

Example 5:
Find proper factors for 18

Solution:
18=1*18
=2*9
=3*6
=6*3
=9*2
Proper factors are 2,3,6,9

No comments:

Post a Comment